Синтез дискретного компенсатора

Систему с компенсатором можно представить в виде:

Рис. 14 Система с компенсатором

Таким образом, рассчитать компенсатор можно следующим образом:

Рассчитаем дискретный компенсатор с помощью Matlab’а.

W1=tf([0.9],[20 1],'td', 1) % задаем передаточную функцию

W2=tf([1],[500 100 1],'td', 15) % задаем передаточную функцию

Wf=tf([0.7],[10 1]) % задаем передаточную функцию

Wob=W1*W2 % общая передаточная двух последовательных частей системы

T=1 % время квантования

Wdiskr=c2d(Wob,T,'zoh') % передаточная в дискретной области

W1d=c2d(W1,T,'zoh') % передаточная в дискретной области

W2d=c2d(W2,T,'zoh') % передаточная в дискретной области

Wfd=c2d(Wf,T,'zoh') % передаточная в дискретной области

[Numer Denom]=tfdata(Wdiskr, 'v') % находим числитель и знаменатель

m=length (Numer)

Denom1=Denom(2:m)

Numer1=Numer(2:m)

q0=1/sum(Numer1)

for i=1:(m-1)

q(i)=q0*Denom1(i)

p(i)=q0*Numer1(i)

end

Q=[q0 q] % матрица коэффициентов числителя

P=[1 -p] % матрица коэффициентов знаменателя

Wr=tf(Q, P, T) % передаточная функция регулятора

Wkomp=(Wfd)/(Wr*W1d) % передаточная функция компенсатора

[Nk Dk]=tfdata(Wkomp, 'v') % коэффициенты числителя и знаменателя

[Nf Df]=tfdata(Wfd, 'v') % коэффициенты числителя и знаменателя

[N1 D1]=tfdata(W1d, 'v') % коэффициенты числителя и знаменателя

[N2 D2]=tfdata(W2d, 'v') % коэффициенты числителя и знаменателя

Получим значение передаточной функции дискретного компенсатора:

Посмотрим на поведение системы при использовании такого компенсатора. Промоделируем поведение системы в Simulink’e.

Рис. 15. Система без компенсатора

Получим следующую характеристику:

Рис. 16. Поведение системы без дискретного компенсатора

С дискретным компенсатором система примет вид:

Рис. 17. Система с компенсатором

И характеристика будет следующей:

Рис. 18. Поведение системы с дискретным компенсатором

Как видно из характеристик, полученный дискретный компенсатор достаточно хорошо компенсирует возмущение.

Другие публикации

Основы фотолитографического процесса
Фотолитография — процесс формирования на поверхности подложки (или основания изделия) элементов приборов микроэлектроники с помощью чувствительных к высокоэнергетичес ...

Проектирование микропроцессорной системы на основе микроконтроллера К1816ВЕ31
Специальность «Компьютерные системы и сети» – одна из важнейших и наиболее универсальных в современной системе образования. В сферу ее интересов входят самые разнообразны ...

Меню

Copyright @2019, TECHsectors.ru.