Расчет пятого (оконечного) каскада

Так как нагрузка каскада низкоомная (Rн=13 Ом), то мы решили использовать двухтактный усилитель мощности. Методика расчета приведена в литературе.

Для начала определимся с параметрами, которым должен удовлетворять транзистор:

где: Pkmax – допустимая мощность рассеяния

Ikmax – максимальный коллекторный ток.

Также:

Также транзисторы должны образовывать комплементарную пару с максимально близкими по значению параметрами и идентичными характеристиками. Исходя из этих условий была выбрана пара транзисторов КТ816А и КТ817А.

Здесь и далее в расчётах представлены лишь те справочные параметры транзистора, которые непосредственно используются в расчетах. Все остальные параметры, в том числе и предельные эксплуатационные, можно посмотреть в справочнике [4]

На выходных характеристиках транзистора построим нагрузочную прямую (см. рисунок) и определим по ней исходный ток коллектора: . Также, по характеристикам найдём:

По входным и выходным характеристикам (проведя между ними аналогию) построим сквозную переходную характеристику (СПХ):

Где: предыдущего каскада

Определим по СПХ: I1=880мА, I2=720мА

Исходя из этого, можно рассчитать коэффициент нелинейных искажений по 3-ей гармонике:

;

По входным и выходным характеристикам определяем:

Отсюда глубина обратной связи:

Следовательно, коэффициент нелинейных искажений с учётом ООС:

Логично предположить, что несмотря на то, что транзисторы максимально идентичны, некоторая асимметрия в верхнем и нижнем плече всё же присутствует. Предположим максимально худший вариант, что токи транзистора отличаются в полтора раза (1+x), тогда коэффициент асимметрии будет равен: .

Найдём коэффициент нелинейных искажений по второй гармонике:

Тогда общий коэффициент нелинейных искажений равен:

Для определения эффективности работы двухтактного усилителя рассчитаем КПД, воспользовавшись следующей формулой:

Согласно схеме, в делитель на входе включены два диода, которые обеспечивают задание рабочей точки. Для выбора диода зададимся:

Используя справочник по полупроводниковым элементам найдём подходящие диоды:

ГД511В:

Найдём номиналы сопротивлений в цепи делителя, полагая их равными:

Из ряда номинальных значений возьмём

Ом

Тогда сопротивление делителя равно:

Зная сопротивление делителя и рассчитав входную проводимость сигнала g11 можно рассчитать входное сопротивление каскада с учётом ООС:

Рассчитаем коэффициент усиления каскада по напряжению:

Как мы и предполагали, коэффициент усиления по напряжению меньше 1, но достаточно близок к нему.

Найдём значения амплитуды напряжения и тока на входе каскада для обеспечения номинальной мощности в нагрузке:

Именно такие амплитуды мы должны получить от предыдущего каскада усилителя.

Также нам надо рассчитать Ср для обеспечения заданных частотных искажений Мн:

Возьмём Ср из допустимого ряда номиналов, Ср=1000 мкФ.

Поскольку граничная частота нашего усилителя меньше 1 МГц , то шунтировать его керамическим конденсатором на ВЧ необязательно.

Для определения входной ёмкости каскада предположим с большой долей вероятности, что двухтактный УМ это два эмиттерных повторителя работающих на разные полупериоды гармонического сигнала но на одну нагрузку. Следовательно, входная ёмкость каскада равна параллельному соединению двух входных емкостей аналогичных эмиттерных повторителей, ёмкость которых легко рассчитать:

Перейти на страницу: 1 2

Другие публикации

Теория надежности
Теория надежности – научная дисциплина, в которой разрабатываются и изучаются методы обеспечения эффективности работы объектов (изделий, устройств, систем и т.п.) в проце ...

Выбор и обоснование среды передачи данных
Среды передачи данных разделяются на две категории. Кабельная среда передачи (носитель) - с центральным проводником, заключенным в пластиковую оболочку. ...

Меню

Copyright @2018, TECHsectors.ru.