Зависимость параметров модели БТ от температуры и площади

Температурные зависимости параметров элементов эквивалентной схемы БТ устанавливается с помощью следующих выражений [1].

Здесь могут устанавливаться несколько температурных уравнений для РSpice параметров модели БТ, которые можно выбрать, установив параметры TLEV и TLEVC в опции .MODEL. В последующем, мы будем рассматривать только уравнения, выбранные с TLEV.

Температурная зависимость ширины ЗЗ Еg (ЕG) следует из выражения

Температурная зависимость bF (BF) определяются уравнением

Температурная зависимость IS (IS) моделируется формулой

IBЕ (IBE) и IBC (IBC) определены

Температурная зависимость ISSUB (ISS) определена как

Зависимости параметров IKF (IKF), IKR (IKR) и IrB (IRB) от температуры представлены следующим образом:

где ТIKF1, ТIKR1, TIRB1 и TIKF2, TIKR2, TIRB2 температурные коэффициенты первого и второго порядка для соответствующих параметров, соответственно.

Следующие параметры определены для случая, когда соответствующие температурные коэффициенты определяются независимо от значения TLEV

Наконец, сопротивления, как функция температуры независимо от значения TLEV, определены следующим образом []:

В вышеупомянутых уравнениях, коэффициенты, заканчивающиеся на 1 - температурные коэффициенты первого порядка, заканчивающиеся на 2 – температурные коэффициенты второго порядка для соответствующего параметра.

Скалярный коэффициент AREA позволяет учесть параллельное соединение однотипных транзисторов, для чего в приведенной выше модели БТ изменяются следующие параметры [5]. На параметр AREA необходимо умножить все токи, емкости и заряды, а все сопротивления поделить на AREA. AREAВ и AREAC масштабный размер области базы и области коллектора. AREAВ или AREAC используются для вычисления, и выбирается в зависимости от вертикальной или горизонтальной геометрии (задание параметра модели SUBS). Для вертикальной геометрии AREAВ – масштабный коэффициент (коэффициент пересчета) для IBC, ISC и CJC. Для горизонтальной геометрии масштабный коэффициент AREAC.

Значение AREA указывается в задании на моделирование при включении транзистора в схему, по умолчанию AREA = 1.

Заключение

В результате проведенной работы изучена PSpice модель БТ и параметры для ее описания. В данном проекте были получены основные соотношения для расчета некоторых параметров модели транзистора, зависимости этих параметров от температуры и конструкции, рассмотрены методы экстракции параметров модели из экспериментальных характеристик.

Анализ PSpice модели БТ показал, что наряду с достоинствами этой модели есть и существенные недостатки. В целом модель биполярного транзистора в PSpice может с высокой точностью и в широком диапазоне напряжений, токов и частот описывать характеристики реальных приборов. Но для этого параметры модели должны быть тщательно идентифицированы по достоверным экспериментальным данным. Для идентификации может использоваться входящая в OrCAD 9.2 программа Model Editor. А получение достоверных исходных данных, особенно на высоких частотах, требует применения очень точной измерительной аппаратуры. Поэтому рядовой пользователь обычно не может квалифицированно идентифицировать параметры модели. А использование значений параметров по умолчанию, как было показано выше, не может обеспечить приемлемой точности расчетов.

Автоматическое проектирование ИС распространяется все шире и становится практически единственным инструментом в этой области. Поэтому знание основ модели необходимо для проектировщиков любого уровня.

Приложение А

Таблица А - Параметры модели биполярного транзистора

Обозначение

параметра

Параметр

Разме-рность

Значение по умолчанию

AF

Показатель степени, определяющий зависимость спектральной плотности фликкер-шума от тока через переход

1

BF

Максимальный коэффициент передачи тока в нормальном режиме в схеме с ОЭ (без учета токов утечки)

100

BR

Максимальный коэффициент передачи тока в инверсном режиме в схеме с ОЭ

1

CJC

Емкость коллекторного перехода при нулевом смещении

Ф

0

CJE

Емкость эмиттерного перехода при нулевом смещении

пФ

0

CJS (CCS)

Емкость коллектор-подложка при нулевом смещении

Ф

0

EG

Ширина запрещенной зоны

эВ

1,11

FC

Коэффициент нелинейности барьерных емкостей прямосмещенных переходов

0,5

GAMMA

Коэффициент легирования эпитаксиальной области

10-11

IKF (IK)*

Ток начала спада зависимости BF от тока коллектора в нормальном режиме

А

IKR*

Ток начала спада зависимости BR от тока эмиттера в инверсном режиме

А

IRB*

Ток базы, при котором сопротивление базы уменьшается на 50% полного перепада между RB и RBM

А

IS

Ток насыщения при температуре 27°С

А

10-16

ISC (C4)*

Ток насыщения утечки перехода база-коллектор

А

0

ISE (C2)*

Ток насыщения утечки перехода база-эмиттер

А

0

ISS

Обратный ток p-n-перехода подложки

А

0

ITF

Ток, характеризующий зависимость TF от тока коллектора при больших токах

А

0

KF

Коэффициент, определяющий спектральную плотность фликкер-шума

0

MJC (МС)

Коэффициент, учитывающий плавность коллекторного перехода

0,33

MJE (ME)

Коэффициент, учитывающий плавность эмиттерного перехода

0,33

MJS (MS)

Коэффициент, учитывающий плавность перехода коллектор-подложка

0

NC*

Коэффициент неидеальности коллекторного перехода

1,5

NE*

Коэффициент неидеальности перехода база-эмиттер

1,5

NF

Коэффициент не идеальности в нормальном режиме

1

NK

Коэффициент, определяющий множитель Qb

0,5

NR

Коэффициент неидеальности в инверсном режиме

1

NS

Коэффициент неидеальности перехода подложки

1

PTF

Дополнительный фазовый сдвиг на граничной частоте транзистора fГР=1/(2Πtf)

градус

0

QCO

Множитель, определяющий заряд в эпитаксиальной области

Кл

0

RB

Объемное сопротивление базы (максимальное) при нулевом смещении перехода база-эмиттер

Ом

0

RBM*

Минимальное сопротивление базы при больших токах

Ом

RB

RC

Объемное сопротивление коллектора

Ом

0

RCO

Сопротивление эпитаксиальной области

Ом

0

RE

Объемное сопротивление эмиттера

Ом

0

TF

Время переноса заряда через базу в нормальном режиме

с

0

TR

Время переноса заряда через базу в инверсном режиме

с

0

TRB1

Линейный температурный коэффициент RB

0C-1

0

TRB2

Квадратичный температурный коэффициент RB

0C-2

0

TRC1

Линейный температурный коэффициент RC

0C-1

0

TRC2

Квадратичный температурный коэффициент RC

0C-2

0

TRE1

Линейный температурный коэффициент RE

0C-1

0

TRE2

Квадратичный температурный коэффициент RE

0C-2

0

TRM1

Линейный температурный коэффициент RBM

0C-1

0

TRM2

Квадратичный температурный коэффициент RBM

0C-2

0

T_ABS

Абсолютная температура

0C

T_MEASURED

Температура измерений

0C

T_REL_GLOBAL

Относительная температура

0C

T_REL_LOCAL

Разность между температурой транзистора и модели-прототипа

0C

VAF (VA)*

Напряжение Эрли в нормальном режиме

В

VAR (VB)*

Напряжение Эрли в инверсном режиме

В

VJC (PC)

Контактная разность потенциалов перехода база-коллектор

В

0,75

VJE (PE)

Контактная разность потенциалов перехода база-эмиттер

В

0,75

VJS (PS)

Контактная разность потенциалов перехода коллектор-подложка

В

0,75

VO

Напряжение, определяющее перегиб зависимости тока эпитаксиальной области

В

10

VTF

Напряжение, характеризующее зависимость TF от смещения база-коллектор

В

XCJC

Коэффициент расщепления емкости база-коллектор CJC

1

XCJC2

Коэффициент расщепления емкости база-коллектор CJC

1

ХТВ

Температурный коэффициент BF и BR

0

XTF

Коэффициент, определяющий зависимость TF от смещения база-коллектор

0

ХТI (РТ)

Температурный коэффициент IS

3

* Только для модели Гуммеля-Пуна

Перейти на страницу: 1 2

Другие публикации

Исследование электровакуумного триода в рамках виртуального эксперимента
В последние годы в среде отечественных радиолюбителей возродился интерес к конструированию и сборке ламповых усилителей звуковых частот. В немалой степени это связано ...

История линий связи
В узком смысле — физическая среда по которой передаются информационные сигналы, аппаратуры передачи данных и промежуточной аппаратуры. В широком смысле — совокупно ...

Меню

Copyright @2020, TECHsectors.ru.